High pressure transmitters with 4 to 20 mA current output for measuring hydraulic pressure greater than 100 bar (1500 psi) with a range of accuracies, electrical interfaces and pressure connectors. High pressure transmitters are used to measure hydraulic pressures on process control & automation equipment.
High pressure milliamp current output transmitter for measuring hydraulic pressures on material testing machines, actuation control systems, pressure rating test equipment, lifts, elevators, cranes and heavy lifting equipment.
TPSA Precision High Pressure Transducer - High pressure transducer for pressure testing applications with pressure ranges from 0...4 bar (60 psi) up to 0...1000 bar (15,000 psi) gauge with a measurement accuracy of 0.1%.
ATM/T Pressure and Temperature Dual Output Transmitter - Dual analogue output signal transmitter for simultaneous measurement of media pressure and temperature. Pressure 100mb - 1000bar and temp -25 - 100 DegC.
KX ATEX Intrinsically Safe SIL2 Approved Pressure Sensor - The Gefran KX pressure sensor is ATEX approved for use with intrinsic safety barriers in hazardous areas, and is SIL 2 approved for additional safety. The KX is available in ranges from -1 to 1 bar up to 1000 bar.
35X HTC High Temperature Digital Pressure Sensor (< 300 degC) - The 35X HTC high temperature digital pressure sensor is suited for media temperatures up to 300 °C
LEO3 Current or Digital Output Pressure Gauge - LCD digital pressure gauge powered externally by a 2 wire series 4-20mA current loop or a digital interface.
XPSA ATEX IS High Pressure Transmitter - ATEX approved hydraulic pressure sensor for instrinsically safe use in hazardous areas with a 4-20mA current loop output signal in pressure ranges from 50 up to 1000 bar gauge.
DMP 336 Hydrogen (H2) Gas Compatible Pressure Transmitter - All stainless steel 316L welded wetted parts pressure transmitter for measuring hydrogen gas
KX ATEX Non-Sparking/Increased Safety (Ex nA/ec) SIL2 Approved Pressure Sensor - The Gefran KX pressure sensor is ATEX Ex nA non-sparking approved for use in zone 2 hazardous areas with flammable gas or dust atmospheres, and is SIL 2 approved for additional safety. The KX is available in ranges from -1 to 1 bar up to 1000 bar.
TK Industrial Pressure Transmitter - General purpose industrial pressure transmitter with a 4-20mA current loop or amplified voltage output available in range from -1 to +1 barg up to 500 barg
DMP334 Hydraulic Pressure Transducer for Very High Pressures - DMP 334 is a high range pressure transducer designed for measuring hydraulic pressures up to 2200 bar (32,000 psi) .
DMP304 Ultra High Range Hydraulic Pressure Transducer - Current output pressure transducer for measurement ranges from 0 to 2000 (30000 psi) range up to a maximum range of 6000 bar (90000 psi).
17.620 G Low Cost Heavy Duty Compact OEM Hydraulic Pressure Sensor - Compact robust all welded stainless steel pressure sensor for heavy duty hydraulic system applications.
- Alternative 200 bar melt pressure transmitter with T/C
- Oil field equipment testing 20,000 psi g 4-20mA out freshwater pressure sensor
- 600 barg 4-20mA output wastewater pressure sensor for experimental component testing
- 600 barg freshwater booster pump pressure switch, gauge and transmitter
- 1000 barg 4-20mA output synthetic oil pressure sensor for hydraulic pump controls
- 1600 barg 4-20mA freshwater pressure sensor for hydrostatic testing
- 600 barg 4-20mA pressure transducer for mobile crane hydraulic control use
- 6,000 psig ATEX/IECEx IS approved 4-20mA pressure sensor for oil pumping use
- 20 MPa g range 4-20mA output high pressure sensor and plug-on display for hydraulic control use
- 300 barg 4-20mA synthetic hydraulic oil pressure transducer for hydraulic control use
- 600 barg 0-20mA output hydraulic oil pressure transmitter for mobile rail vehicle system controls
- 50000 psig 4-20mA mineral hydraulic oil pressure sensor for chemical processing use
- 10 ksi g range 4-20mA out high pressure sensor for pumps and actuators bench test rig use
- 3000 psi absolute 0-20mA output mineral oil pressure sensor for hydraulic control use
- Injection moulding machine 22000 psig 4-20mA output synthetic hydraulic oil pressure sensor
- 6000 psig range 4-20 mA output ceramic diaphragm pressure sensor
- 2000 bar high pressure water pump 4-20mA pressure transducer
- 20,000 psi g digital pressure gauge with 4 to 20 mA output
- 300°C max temperature, 0 to 300 bar, high range pressure sensor
- 5000 bar Pressure Transmitter with AE HP fitting
- Military connector ATEX 400 bar hydraulic pressure transmitter
- High media temperature tolerant transmitter for high range pressure
- 160 bar g pressure transmitter for use with high temperature media up to 300 degC
- 30000 psi water and cutting oil pressure transmitter
Why do our high pressure transmitters keep failing?
Not all pressure transmitters use the same sensing technology and some are more suited to measuring high pressures than others. It is high pressure spikes that are the most common cause of pressure transmitter failure and they will punch or rip a hole in a diaphragm if the right precautions are not implemented.
Cause of damage
High pressure spikes
High pressure spikes are typically generated in hydraulic systems where fluids are flowing under high pressure. It is the sudden change in momentum of the fluid in the system or the release of stored pressure from valves opening and closing that are the main cause of sudden over-pressure.
The high pressure surges generate a tremendous amount of energy over a very short time period which can be very difficult to detect and if they are allowed to reach a diaphragm that is not adequately protected they can cause irreparable damage.
Cavitation
Another cause of high range pressure transmitter failure is cavitations, which is the sudden collapse of a void generated by trapped air or fluid displacement which send out shockwaves. These resulting shockwaves are a risk to any thin material such as a diaphragm that happens to be within range.
Ways to protect from failure
If you are experiencing an unusual number of high pressure transmitter failures then you may want to try one of these methods to resolve the problem.
Use a pressure sensor which has a robust sensing technology
A high range pressure transmitter where the sensing diaphragm is in direct contact with the fluid media have relatively thick diaphragms which offer more protection against shockwaves caused by cavitations or pressure surges. However they are still vulnerable to low frequency over-pressure which is not so easily dissipated or absorbed unless physical mechanical stops are located behind the diaphragm to prevent it from being overstressed.
Install overpressure protection between a vulnerable pressure transmitter and the source of surge pressures
The most vulnerable pressure sensor technology to hydraulic pressure spikes are those that have a oil filling between a very thin isolation membrane and the sensing diaphragm. Pressure transmitters that use this type of technology can be protected by fitting a snubber to the pressure port which will dissipate any shockwaves before they reach the thin isolation membrane.
Snubbers have either sintered porous filters or small bore restrictions to dampen any pressure shocks or surges. The main disadvantages of using a snubber is that they slow down pressure measurement response and can become blocked by particles over time.
Re-locate the pressure transmitter to a position away from the source of pressure spikes.
Finding a location in the system which offers the lowest chance of over-pressure spikes can be as easy as positioning the pressure transmitter as far away as possible from bends or restrictions in the pipe work which are potential pressure spike hotspots.
But to truly understand the pressure spike behaviour of a hydraulic system it should be tested by fitting high dynamic response strain gauge output pressure transducers at different locations and examining the various operation modes with an oscilloscope or high sample rate data acquisition card.
Another method is to purposely fit a lower range pressure sensor and try it in different locations and examine the zero shift of the output signal after testing at each location. The location that generates the smallest zero shift is likely to be the best position for the pressure transmitter.