• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
SensorsONE

SensorsONE

Measurement Instrumentation Products

  • Products
  • Tools
  • Contact

Using absolute pressure sensors to measure hydrostatic level

Measuring hydrostatic liquid level is normally carried out using a vented gauge reference pressure sensor.  However, venting the inside of a pressure sensor to the outside air is not always possible and failures can be caused by internal condensation.

When measuring the water level in a freshwater reservoir for example, the hydrostatic pressure sensor is measuring both the pressure of water above its position and the atmospheric air pressure acting on the surface of the reservoir. Normally a vented reference would be used to equalise the offset due to atmospheric pressure so that the true water level is measured. However if it is necessary to use an absolute hydrostatic pressure sensor this is not possible and the atmospheric pressure has to be measured at the surface and taken away from the reading of the absolute hydrostatic pressure sensor.

In geotechnical applications for example where there are several submersible borehole level sensors installed within a local area, only one barometric pressure sensor is necessary to compensate all the other level instruments. This can work out much lower cost especially with deep boreholes where the cost of vented cable and desiccant packs outweighs the cost of one extra barometric pressure sensor.

Absolute reference hydrostatic level pressure sensor products
  • Hydrophone array submersible 200 meter seawater depth sensor
  • LMK458 Marine Approved Hydrostatic Level Transmitter
  • BMS water tank 6mH2Og range 0-10V out submersible level sensor
  • 10 metre range non-vented submersible absolute range pressure and barometric sensor

Request info on absolute reference hydrostatic level pressure sensor products for your application.

Where there is a ratio greater than 10 to 1 between the hydrostatic pressure and the barometric pressure, no significant additional errors will be introduced over the vented gauge reference method as longs as both pressure instruments are of a similar accuracy grade. But when the liquid level range falls below 100 metres, the barometric pressure compensation starts to play a bigger part in the error budget eventually increasing the errors effectively by 300% for a 10 meter level range for instance.

This disproportionate increase in accuracy is caused by having to use a 2 bar absolute range to measure a 10 metre (approx 1 bar gauge pressure) level range plus a barometric range of approximately 1 bar absolute. So if it is assumed that each sensor has an accuracy of 0.1% full scale the overall error will be 0.3% full scale when compared to a vented hydrostatic level instrument with a level range of 1 bar gauge (10 mWG).

The atmospheric pressure is effectively being measured twice and as the level range reduces it becomes the dominant component of the total error. This becomes even worse with level ranges between 1 and 10 meters of water and quickly the economical and practical benefits of using an absolute hydrostatic pressure instrument become over-shadowed by the severe degradation in accuracy.

Atmospheric pressure sensor products
  • TSA Precision Pressure Transmitter
  • Barometric range 800-1100mb IECEx approved intrinsically safe pressure transmitter
  • Barometric transducer with 23-34 inHg input range and 0-5Vdc output range
  • 500-1100 mbar absolute 0-10Vdc out air pressure sensor for meteorological use

Request info on atmospheric pressure sensor products for your application.

Primary Sidebar

Liquid Level Sensor Specifier

Specify a liquid level sensor
Select your liquid level sensor requirements

Product Selection Guides

  • Differential Pressure Sensors
  • Digital Pressure Gauges
  • Digital Pressure Sensors
  • Digital Readouts
  • Hydrostatic Liquid Level Sensors
  • Millivolt Output Pressure Transducers
  • Pressure Transducers
  • Pressure Transmitters
  • Voltage Output Pressure Transducers

Application Selection Guides

  • Absolute Pressure
  • Dual Temperature and Pressure
  • Flush Diaphragm
  • High Frequency Response
  • Leak Testing
  • Low Pressure Range
  • Oxygen Service
  • Submersible
  • Vacuum

Help Guides

  • Using absolute pressure sensors to measure hydrostatic level
  • Measuring vacuum with negative gauge or absolute ranges
  • Measuring the difference in air pressure between rooms
  • What does negative and positive gauge pressure mean
  • Measuring the Pressure of Hot Media
  • Determining water tank volume using hydrostatic pressure
  • How to get a 10 volt signal from a 4-20mA output pressure sensor

Product Enquiry

Send us your enquiry for a product associated with this Using absolute pressure sensors to measure hydrostatic level page, and get assistance with selecting a product for your application.

Email Your Enquiry

enquiries@sensorsone.com

© 2022 SensorsONE Ltd, all rights reserved

  • Home
  • Products
  • Tools
  • Legal
  • Contact